Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 357: 142006, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621493

RESUMO

Anaerobic digestion in two sequential phases, acidogenesis and methanogenesis, has been shown to be beneficial for enhancing the biomethane generation from wastewater. In this work, the application of glycerol (GOH) as a fermentation co-substrate during the wastewater treatment was evaluated on the biodegradation of different pharmaceuticals and personal care products (PPCPs). GOH co-digestion during acidogenesis led to a significant increase in the biodegradation of acetaminophen (from 78 to 89%), ciprofloxacin (from 25 to 46%), naproxen (from 73 to 86%), diclofenac (from 36 to 48%), ibuprofen (from 65 to 88%), metoprolol (from 45 to 59%), methylparaben (from 64 to 78%) and propylparaben (from 68 to 74%). The heterotrophic co-metabolism of PPCPs driven by glycerol was confirmed by the biodegradation kinetics, in which kbio (biodegradation kinetics constant) values increased from 0.18 to 2.11 to 0.27-3.60 L g-1-VSS d-1, for the operational phases without and with GOH, respectively. The assessment of metabolic pathways in each phase revealed that the prevalence of aromatic compounds degradation, metabolism of xenobiotics by cytochrome P450, and benzoate degradation routes during acidogenesis are key factors for the enzymatic mechanisms linked to the PPCPs co-metabolism. The phase separation of anaerobic digestion was effective in the PPCPs biodegradation, and the co-fermentation of glycerol provided an increase in the generation potential of biomethane in the system (energetic potential of 5.0 and 6.3 kJ g-1-CODremoved, without and with GOH, respectively). This study showed evidence that glycerol co-fermentation can exert a synergistic effect on the PPCPs removal during anaerobic digestion mediated by heterotrophic co-metabolism.


Assuntos
Biodegradação Ambiental , Fermentação , Glicerol , Águas Residuárias , Poluentes Químicos da Água , Glicerol/metabolismo , Anaerobiose , Preparações Farmacêuticas/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos , Cosméticos/metabolismo , Cinética
2.
J Environ Manage ; 317: 115388, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35653845

RESUMO

The organic matter bioconversion into methane during anaerobic digestion (AD) comprises different steps, the acidogenic and methanogenic phases being clearly distinct in terms of metabolic activities. In this work, new configurations of anaerobic fixed bed biofilm reactors (AFBBR) were operated under conventional methanogenic conditions (single phase - SP-AFBBR, M1R), and in a sequential two-phase system, acidogenic reactor followed by methanogenic reactor (TP-AFBBR, AcR + M2R), in order to verify the impact of the AD phase separation on the overall system performance in operational, kinetics and microbiological aspects. The results indicated that feeding the methanogenic reactor with the acidogenic effluent stream provided a shorter operating start-up period (11 and 32 days for SP and TP-AFBBR, respectively), a greater alkalinity generation (0.14 and 0.41 g-CaCO3·g-CODremoved-1 for M1R and M2R, respectively), and the optimization of biomethane production (methane yield of 95 and 154 N-mLCH4·g-CODremoved-1 for M1R and M2R, respectively). The COD removal kinetics was also favored in the TP-AFBBR (k1-COD = 1.4 and 2.9 h-1 for M1R and M2R, respectively), since the soluble fermentation products were readily bioavailable to the biomass in the reactor. Hydrogenotrophic methanogenesis was the predominant pathway in the M2R, while the Methanosaeta-driven acetoclastic pathway predominated in the M1R. The greater diversity of Bacteria and Archaea in M2R denotes a better balance between the species that degrade volatile organic acids from AcR (i.e. Syntrophorhabdus, Syntrophus and Syntrophobacter) and the hydrogenotrophic methanogens (Methanoregula, Methanolinea and Methanospirillum) that consume the biodegradation products. The estimated bioenergy generation potential (range of 0.39-0.64 kWh·m-3-sewage considering the COD removed) for full-scale TP-sewage treatment plants evidences the feasibility of energetic recovery in the domestic sewage anaerobic treatment.


Assuntos
Euryarchaeota , Esgotos , Anaerobiose , Biofilmes , Reatores Biológicos/microbiologia , Metano , Esgotos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...